Dyck paths, Motzkin paths and traffic jams

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dyck paths , Motzkin paths and traffic jams

It has recently been observed that the normalization of a one-dimensional out-of-equilibrium model, the asymmetric exclusion process (ASEP) with random sequential dynamics, is exactly equivalent to the partition function of a two-dimensional lattice path model of one-transit walks, or equivalently Dyck paths. This explains the applicability of the Lee–Yang theory of partition function zeros to ...

متن کامل

Dyck Paths, Motzkin Paths, and the Binomial Transform

We study the moments of orthogonal polynomial sequences (OPS) arising from tridiagonal matrices. We obtain combinatorial information about the sequence of moments of some OPS in terms of Motzkin and Dyck paths, and also in terms of the binomial transform. We then introduce an equivalence relation on the set of Dyck paths and some operations on them. We determine a formula for the cardinality of...

متن کامل

Motzkin Paths, Motzkin Polynomials and Recurrence Relations

We consider the Motzkin paths which are simple combinatorial objects appearing in many contexts. They are counted by the Motzkin numbers, related to the well known Catalan numbers. Associated with the Motzkin paths, we introduce the Motzkin polynomial, which is a multi-variable polynomial “counting” all Motzkin paths of a certain type. Motzkin polynomials (also called Jacobi-Rogers polynomials)...

متن کامل

Weighted 2-Motzkin Paths

This paper is motivated by two problems recently proposed by Coker on combinatorial identities related to the Narayana polynomials and the Catalan numbers. We find that a bijection of Chen, Deutsch and Elizalde can be used to provide combinatorial interpretations of the identities of Coker when it is applied to weighted plane trees. For the sake of presentation of our combinatorial corresponden...

متن کامل

Restricted involutions and Motzkin paths

Given a permutation σ ∈ Sn, one can partition the set {1, 2, . . . , n} into intervals A1, . . . , At such that σ(Aj) = Aj for every j. The restrictions of σ to the intervals in the finest of these decompositions are called connected components of σ. A permutation σ with a single connected component is called connected. Given a permutation σ ∈ Sn, we define the reverse of σ to be the permutatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment

سال: 2004

ISSN: 1742-5468

DOI: 10.1088/1742-5468/2004/10/p10007